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Abstract

Capturing the spatial distribution of high-intensity rainfall over short-time intervals is
critical for accurately assessing the efficacy of urban stormwater drainage systems. In
a stochastic simulation framework, one method of generating realistic rainfall fields is by
multiplicative random cascade (MRC) models. Estimation of MRC model parameters5

has typically relied on radar imagery or, less frequently, rainfall fields interpolated from
dense rain gauge networks. However, such data are not always available. Further-
more, the literature is lacking estimation procedures for spatially incomplete datasets.
Therefore, we proposed a simple method of calibrating an MRC model when only data
from a moderately dense network of rain gauges are available, rather than from the10

full rainfall field. The number of gauges need only be sufficient to adequately estimate
the variance in the ratio of the rain rate at the rain gauges to the areal average rain
rate across the entire spatial domain. In our example for Warsaw, Poland, we used
25 gauges over an area of approximately 1600 km2. MRC models calibrated using the
proposed method were used to downscale 15-min rainfall rates from a 20 by 20 km15

area to the scale of the rain gauge capture area. Frequency distributions of observed
and simulated 15-min rainfall at the gauge scale were very similar. Moreover, the spa-
tial covariance structure of rainfall rates, as characterized by the semivariogram, was
reproduced after allowing the probability density of the random cascade generator to
vary with spatial scale.20

1 Introduction

Urban catchments, due to their diminished damping properties relative to rural and
natural catchments, are particularly responsive to bursts of local, high intensity rain-
fall. This makes characterization of the spatial distribution of rainfall at small time
scales critical to evaluating the efficacy of urban stormwater drainage systems. Tra-25

ditionally, design storms have been used to evaluate these systems in conjunction with

7262

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/7261/2011/hessd-8-7261-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/7261/2011/hessd-8-7261-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 7261–7291, 2011

Parameterization with
rain gauge data

D. E. Rupp et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

rainfall-runoff and hydrodynamic models, but in recent years there has been a push to-
wards stochastically downscaling long (e.g., multi-decadal) time series of coarse (e.g.,
daily) rainfall to higher resolution (e.g., minutes) with which to force models of stormwa-
ter drainage systems (e.g., Hingray and Ben Haha, 2005; Molnar and Burlando, 2005;
Licznar et al., 2011a). Advantages of using long time series are that they allow for5

a statistical analysis of system performance and they eliminate the problem of defin-
ing the appropriate initial catchment water storage for a design storm (Hingray and
Ben Haha, 2005). Furthermore, long time series of daily rainfall are already abundant
and readily available, and time series of high-resolution rainfall with which to develop
downscaling models are becoming more prevalent.10

While using long time series data provides advantages, their still remains the issue
that the rainfall field is continuously evolving through time. While one might simplify the
problem by using a predefined and static dimensionless rainfall field, this takes away
a key strength of the stochastic simulation approach. An alternative is to stochasti-
cally downscale the rainfall field as well as the time series. For this purpose, a number15

of models for stochastically downscaling rainfall fields have been developed. Follow-
ing Ferraris et al. (2003), most can be grouped into three general types: autoregres-
sive models, point-process models that randomly position rainfall “cells”, and fractal
and multifractal cascade models. Additionally, there are hybrid models that combine
features of these different approaches. For an overview of these various types, see20

Ferraris et al. (2003) and references therein. We focus on multifractal cascade mod-
els because, as noted by Veneziano et al. (2006), multifractal models are simpler and
have fewer parameters, and furthermore, though we do not consider these properties
in this study, one can deduce the frequency distribution of rainfall intensities and rainfall
extremes from their multi-fractal structure.25

Parameter estimation for spatial downscaling models requires observations of the
rainfall field. With multifractal cascade models, parameter estimation has mostly been
done using radar-derived rainfall fields, though in a small number of cases rainfall fields
were generated by interpolating rain gauge data (Svensson et al, 1996; Jothityangkoon
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et al., 2000; Sharma et al., 2007). However, when the gauge density is coarse relative
to the final spatial resolution of interest, the interpolation methods will fail because they
smooth out the fine-scale variability.

In the absence of calibrated radar-derived rainfall scans or a very dense rain gauge
network, the literature is lacking parameter estimation techniques for the applied hy-5

drologist. Therefore, we propose a simple method of calibrating a multifractal cascade
model for generating rainfall fields of short-duration rainfall (e.g., 15 min) when informa-
tion across the full field is not available, or specifically, when only data from a network of
rain gauges is available. The number of gauges need only be sufficient to adequately
estimate the variance in the ratio of the rain rate at the rain gauges to the areal average10

rain rate across the entire spatial domain. The particular number will depend on the
degree of spatially variability across the domain of interest.

In this study, we do not consider temporal evolution of the rainfall fields, which is re-
quired for a complete space-time downscaling model. Various cascade-based space-
time models have been proposed (e.g., Over and Gupta, 1996; Venugopal et al., 1999;15

Deidda, 2000; Jothityangkoon et al., 2000; Kang and Ramirez, 2010). Parameteriza-
tion of a space-time model will be a topic of a subsequent paper.

2 Data and methodology

2.1 Data

Rainfall data were collected from a network of 25 rain gauges distributed through-20

out Warsaw, Poland. The gauges were installed by Warsaw Waterworks in the fall
of 2008 to better characterize storm systems with the specific objective of modeling
combined sewer- stormwater systems. Individual gauges were located to obtain best
representative meteorological observations in urban settings (Oke, 2006) and to have
approximately constant gauge density over the entire city (Fig. 1). The gauges were25

connected to a single data acquisition system by means of general packet radio service
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(GPRS) modems. The data used in this study were recorded with a temporal resolution
of 1 min and covers the period from the 38th week of year 2008 up to the 49th week of
year 2010.

All gauges were weighing-type instruments suitable for both liquid and solid precip-
itation (MPS systém Ltd., model TRwS 200E). The manufacturer’s claimed accuracy5

was 0.1 % and the resolution was 0.001 mm. Field tests of the installed gauges were
conducted prior to operational use. Good agreement between total depth of known and
recorded precipitation was observed. However, at a 1-min resolution, the output signal
was detectably damper and broader than the input signal. As a consequence, rain was
at times still being recorded for up to a few minutes after water was no longer being10

added to the gauge funnel. To reduce the relative error caused by this modulation of
the signal, we aggregated the data to 15-min intervals.

2.2 Spatial downscaling model

Our downscaling model is based on a discrete multiplicative random cascade (MRC).
In the discrete MRC model of rainfall fields, the small-scale rainfall per unit area in a15

square cell ∆ at the nth cascade level is given by

Rn
(
∆n,k

)
=R0

n∏
j=1

Wj,k (1)

where the area of ∆n is given by R0L
2
0b

−n. Here the large-scale rainfall R0 is the
rainfall amount per unit area over the host cell with area L2

0. The constant b is the
branching number, or number of sub-cells (in our case, 4) into which rainfall from a cell20

is partitioned at the next level in the cascade (Fig. 1). For each level, the index pair (j ,
k) represents the cell along the path to the n-th level cell. The cells at the n-th cascade
level are indexed by ∆n,k , k = 1,2, . . . , 4n (see Over and Gupta, 1996). The cascade
weight W is a random variable with a prescribed distribution function, of which various
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have been proposed in the context of rainfall (e.g., Schertzer and Lovejoy, 1987; Gupta
and Waymire, 1993; Over and Gupta, 1996; Deidda et al., 1999; Ahrens, 2003).

The weight W is generated as a random quantity with the following probability den-
sity:

P (W =0)=1−p (2a)5

P (W =p−1W +)=p (2b)

where P denotes probability, p is a parameter and W + are the non-zero (positive)
weights (Over and Gupta, 1994). Eqs. (2a) and (2b) comprise the cascade genera-
tor: Eq. (2a) generates the intermittency in the rainfall field (subareas of zero rainfall),
while Eq. (2b) generates the rainfall volumes greater than zero.10

The non-zero weights W + have a log-stable density, which is to say that X = ln(W +)
has a stable distribution with four parameters: the stability index 0<α=2, the skew-
ness parameter −1≤β=1, the scale parameter σ > 0, and the shift parameter −∞<
µ <∞. We denote the stable distribution by S(α,β,σ,µ). While the shift parame-
ter can be defined in several ways, we follow the definition as given in Samorodnit-15

sky and Taqqu (1994). Properties of stable distributions in the context of multifrac-
tal rainfall fields have been discussed by Schertzer and Lovejoy (1987), Lovejoy and
Schertzer (1990), and Gupta and Waymire (1990, 1993), for example.

To ensure that the moments of W + are finite, we set β=−1 (Samorodnitsky and
Taqqu, 1994). Furthermore, to conserve mass, on average, throughout the entire cas-20

cade process, we impose the condition that E [W +]=1. This means that

µ=σαsec(πα/2) (3)

(McCulloch, 1996), which leaves two free parameters α and σ to describe the distribu-
tion. When α=2, distribution becomes normal with mean µ and variance σ2

N , where
σ =σN/

√
2.25
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2.3 Parameter estimation

Typically, estimation of spatial cascade model parameters relies on an analysis of the
spatial scaling of the statistical moments of the observed rainfall quantities (e.g., Over
and Gupta, 1996; Deidda, 2000; Jothityangkoon et al., 2000; Pathirana and Herath,
2002; Sharma et al., 2007; Kang and Ramirez, 2010). The q-th moment M at each5

spatial scale λ is calculated as

M(λn,q)=
∑
k

[
Rn

(
∆n,k

)]q
(4)

where the spatial scale λn is given by Ln/L0. Rainfall quantities Rn
(
∆n,k

)
at a particular

scale λn are determined by aggregating observed rainfall into grids with cells of area
∆n. The relationship between the moments and scale is made through log-log plots of10

M(λn,q) versus λn for various q. Linearity of the individual moments versus scale in
log-log space implies either mono- or multifractality. The moment-scaling behavior of a
fractal field has the form

M(λn,q)= (λ)τ(q) (5)

where τ(q) versus q is either a line (monofractal) or a curve (multifractal). Finally, the15

parameters of the cascade generator are estimated by fitting a distribution-dependent
theoretical function to the empirical relationship τ(q). For examples on how the
moment-scaling estimation method would be applied to the MRC model such as the
one described in Sect. 2.2, see Pathirana and Herath (2002) and Serinaldi (2010).

The above estimation method requires observed quantities of Rn across a range of20

scales λn. Unfortunately, we are hindered by a low gauge density (∼0.25 gauges km−2)
relative to a desirable grid cell density (on the order of 103 cells km−2, or a resolution
of 30 by 30 m).

If we imposed fine resolution grids over our gauge network, very few cells would con-
tain enough gauges to adequately estimate the areal-average rain rate for those cells.25
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Though we could use deterministic spatial interpolation techniques (e.g., Thiessen
polygons) to estimate the rainfall everywhere at every cell in the grid, this would likely
result in a much too smooth rainfall surface.

Because of our inability to carry out a reliable analysis of moment scaling in space,
we assumed a priori that there is power law scaling of the statistical moments. We5

based this assumption on previous observations of multifractality in rainfall fields for
spatial scales under 30 km (e.g., Kumar and Foufoula-Georgiou, 1993a, b; Perica and
Foufoula-Georgiou, 1996; Pathirana and Herath, 2002; Kang and Ramirez, 2010). Mul-
tifractality implies that realistic rainfall fields could be reasonably reproduced, in a sta-
tistical sense, by a family of parsimonious multiplicative random cascade models.10

As an alternative to moment-scaling analysis, we parameterized our model using
only the final product of the weights W1 through Wn, which we express by the variable
Y as

Yn
(
∆n,k

)
=

n∏
j=1

Wj,k (6)

We consider the cases for Y =0 and Y > 0 separately.15

From Eq. (2b), pj is the probability that Wj > 0 along a path in any j of n cascade
levels. The probability that Y = 0 (which is to say that at least one Wj equals zero
along the path down all n levels) can be calculated as 1 minus the probability that Wj
is greater than zero in all n levels. From the binomial distribution function (Ross, 1998)
we obtain the solution for the probability that Y =0:20

P (Y =0)=1−
n∏

j=1

pj (7)

To help us determine the distribution of Y when Y > 0, we defined the variable Y +:

Y +
n
(
∆n,k

)
=

n∏
j=1

W +
j,k (8)
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where Y + >0. Noting from Eq. (2b) that W =W +/p, Y can similarly be defined in terms
of W + as

Yn
(
∆n,k

)
=

n∏
j=1

(
W +

j,k/pj

)
(9)

Combining Eqs. (8) and (9) and using the substitution P (Y >0)=1−P (Y =0) yields the
definition of Y + in terms of Y :5

Y + = Y P (Y >0) (10)

For constant α the log-stable distribution parameters for Y + can be easily determined
from the log-stable parameters of W + because the product of log-stable variables is
also log-stable. Let Y + =W +

1 W +
2 ...W +

n for j = 1, . . . , n, where W +
j are independent

random variables given by W +
j = exp(Xj ), with Xj ∼ SX (α,−1,σj ,µj ). If Z = ln(Y +) =10

X1+X2+ ...+Xn, then Z is distributed as Z ∼SZ (α,−1,σZ ,µZ ), where

σα
Z =

n∑
j=1

σα
j (11)

and

µZ =
n∑

j=1

µj (12)

for α 6=1 (Samorodnitsky and Taqqu, 1994).15

We estimated parameters for 8 variations, or versions, of the MRC model described
in Sect. 2.2. The versions varied in complexity. The simplest version used the
log-normal distribution for W + with parameters that were scale-invariant and rainfall-
independent, whereas the most complex used the log-stable distribution with parame-
ters that depended on both scale and rainfall. Each version is summarized below:20
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1. SI/RIσ/LN: the parameters of the cascade generator were scale invariant (SI) and
the random variable W + was log-normally (LN) distributed and independent of
rainfall intensity (RIσ).

2. SI/RIσ/LS: the parameters of the cascade generator were scale invariant and the
random variable W + had a log-stable (LS) distribution and was independent of5

rainfall intensity.

3. SI/RDσ/LN: the parameters of the cascade generator were scale invariant and
the random variable W + was log-normally distributed and dependent on rainfall
intensity (RDσ).

4. SI/RDσ/LS: the parameters of the cascade generator were scale invariant and the10

random variable W + had a log-stable distribution that was dependent on rainfall
intensity.

5. SDσ/RIσ/LN: the scale parameter σ of the cascade generator was scale depen-
dent (SD) and the random variable W + was log-normally distributed and indepen-
dent of rainfall intensity.15

6. SDσ/RIσ/LS: the scale parameter σ of the cascade generator was scale depen-
dent and the random variable W + had a log-stable distribution and was indepen-
dent of rainfall intensity.

7. SDσ/RDσ/LN: the scale parameter σ of the cascade generator was scale depen-
dent and the random variable W + was log-normally distributed and dependent on20

rainfall intensity.

8. SDσ/RDσ/LS: the scale parameter σ of the cascade generator was scale depen-
dent and the random variable W +had a log-stable distribution was dependent on
rainfall intensity.
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For those cases when σ was scale invariant, σ was solved for uniquely in terms of σZ
by inverting Eq. (11):

σ =n−1/ασZ (13)

When σ was scale dependent, σ varied as the following function of the length scale λ
= L/L0:5

σα(λ)=σα
1 λ

γ (14)

where γ is a constant and σ1 is the value of σ at λ=1. For γ >0 as the scale λ
decreases the variance of W + decreases, which places it in the family of “bounded”
cascade models (Marshak et al., 1994). Combining Eqs. (11) and (14) and using the
substitution λ= (1/2)j−1, σα

1 can be solved for in terms of σZ :10

σα
1 =

1−2−γ

1−2−nγ σ
α
Z (15)

for γ >0
In all 8 model versions, the intermittency parameter was determined from P (Y >0):

p= [P (Y >0)]1/n (16)

Because it has been observed that spatial cascade parameters, and the intermit-15

tency parameter in particular, depend on large-scale rainfall (Over and Gupta; 1994;
1996; Deidda, 2000; Jothityangkoon et al., 2000; Pathirana and Herath, 2002; Deidda
et al., 2004; 2006; Sharma et al., 2007), we allowed some of the parameters of the
cascade generator to vary with the large-scale rainfall depth R0. While it has been
argued that for both space (Veneziano et al., 2006) and time (Veneziano et al., 2006;20

Rupp et al., 2009; Serinaldi, 2010) the parameters should vary with rainfall intensity
at each scale (not just the largest scale), our dataset did not permit us to adequately
examine rainfall dependency across scales, therefore we were restricted to making the
parameters dependent on the large-scale rainfall only.
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In all 8 versions, we allowed the intermittency parameter to depend on large-scale
rainfall by varying P (Y >0) in Eq. (16) with R0 as

P (Y >0)=
1
2

{
1+erf

[
ln(R0)−m√

2s2

]}
(17)

where erf is the error function with parameters m and s (Rupp et al., 2009). In 4 of the
models, the scale parameterσ was varied with rainfall by relating σZ in Eqs. (13) and5

(15) to R0 as

σZ =c+ f (R0) (18)

where f () is an arbitrary function and c is a constant. We used cubic splines to deter-
mine f ().

Observations of rainfall at gauges were used to estimate values of Y , Y +, and P (Y >10

0). Combining Eqs. (1) and (6), we see that an estimate of Y from observations of R at
a given rain gauge can be calculated as

_
Y i ,k =

Rn,i

R0,i
(19)

where
_
Y is the estimate of Y , i = 1,2, . . . , Nobs indexes the i -th observation in time,

and k = 1,2, . . . , Ngauges indexes the rain gauge. The areal average rainfall R0,i at the15

reference length L0 was approximated by taking the mean of the rainfall measured over
all Ngauges at time i . To estimate P (Y =0), we used

P̂i (Y >0)= (number of gauges with non−zero rain)i/Ngauges (20)

Finally, Y +was estimated with

Ŷ +
i ,k = Ŷi ,k P̂i (Y >0) (21)20
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Because Y + is bounded by zero and positive infinity, whereas the upper limit to
_
Y

+
is

Ngauges, the distribution of
_
Y

+
is only approximately equal to the distribution of Y +. This

limitation, plus instrument error at very low and very high rainfall intensities, introduces
a bias into the estimation of σZ . For now, we simply accept this bias as a shortcoming
of the estimation procedure, though we discuss it further in Sect. 3.5

Free software packages for estimating the parameters of the stable distribution are
rare, and we found none that suited our particular needs. For this reason, we used

a simple procedure to estimate αZ and σZ from the “observed” values ln
_
Y

+
. An op-

timization algorithm minimized the sum of squared differences between the following
observed and theoretical quantiles: 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95. For the10

normal distribution, we used the maximum likelihood method.
Note that except for at the largest spatial scale, we did not areally average the precip-

itation data. We also did not consider the particular location in space of the observed
rainfall. Both of these characteristics distinguish our study from others. However, we
did use the number of cascade levels n that brought us to the scale of the rain gauge15

itself. Given that the rain gauges have a diameter of approximately 0.15 m, and that the
spatial extent of our rain gauge network corresponds to approximately L0 =20 000 m,
approximately n=17 cascade levels are needed.

2.4 Model evaluation

Direct comparison of the stochastically downscaled data to the observed rainfall re-20

quires disaggregation down to the capture area of the rain gauge through n= 17 cas-
cades levels, which would result in a grid with over 17×109 cells. This would be
impractical, especially given that very many such spatial fields would be generated for
time increments of as little as 15 min. Instead of generating complete rainfall fields at
the spatial resolution of a rain gauge, we followed the cascade process down a subset25

of the total number of possible paths down the cascade. Along a path at each subdi-
vision, we randomly chose 1 of the 4 cells (with equal weight given to each cell), and
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tracked the position (x, y) of the cell for each of the n= 17 cascade levels. In total,
we followed 240 paths per 15-min increment. We used Eq. (1) to calculate the 15-min
rainfall amounts at each of these 240 locations. The large-scale areal-averaged rainfall
depth R0 at each time increment was approximated by the mean of all the available
observed rainfall depths.5

To further reduce the computational burden, downscaling was done on a sub-sample
of all available 18 723 15-min time steps where R0 > 0. We selected 2000 time steps
such that the cumulative distribution function (CDF) of the sub-sampled Rn was similar
to the CDF of the full record.

The spatial structures of the observed and simulated 15-min rainfall were compared10

using semivariograms of log (Rn) for Rn ≥ 0.001 mm (the minimum rainfall amount
recorded). The spatial structure of the intermittency was examined with semivari-
ograms of presence (1) and absence (0) of rain.

In addition to the spatial structure, we assessed the ability of the models to reproduce
the cumulative distribution frequency (CDF) of 15-min rainfall for Rn > 0.15

3 Results and discussion

The proportion of gauges with zero rain in a 15-min period, P (Y = 0), was found to be
strongly dependent on the large-scale rainfall rate R0 (Fig. 3). Consistent with many
other studies (e.g., Over and Gupta, 1994, 1996; Jothityangkoon et al., 2000; Pathirana
and Herath, 2002; Sharma et al., 2007), the sparseness of the rain field was much20

greater when R0 was low, while at high rainfall rates the tendency was for it to be
raining everywhere. The sigmoidal shape of Eq. (10) appears suitable for simulating
the rainfall intermittency, as it allows for P (Y = 0) to go to 1 as R0 goes to 0, and to go
to 0 as R0 goes to +∞.

The empirical histograms of lnY + were rightward skewed, thus more similar to a log-25

stable density with β = −1 than to a log-normal distribution (Fig. 4). At progressively
lower values of R0 (e.g., <∼0.01 mm), the empirical histograms were progressively
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more dominated by lnY + = 0, such that neither the log-stable nor the log-normal den-
sities matched the observations. It is clear that by fitting theoretical distributions to
lnY + at low values of R0, we are merely fitting to a data artifact and not to true rainfall
behavior.

The value of the stable parameter αZ showed a general increasing trend with in-5

creasing R0 (Fig. 5). However, whenαZ was fixed at a constant value of 1.47, the fits of
the log-stable distributions were only marginally degraded (Fig. 4). This was fortunate
because it allowed us to keep αZ as a constant parameter and only have to vary the
scale parameter σZ with large-scale rainfall. The particular value of αZ = 1.47 is the
average αZ using all values of lnŶ + for R0 ≥ 0.004 mm. The threshold of 0.004 mm was10

selected because below this value the empirical distributions were strongly influenced
by data precision (Fig. 4).

The dependency of σZ on R0 was complex (Fig. 5), though cubic splines with no
more than 6 knots reproduced the empirical relationship of σZ with R0 well. The rela-
tionship was similar in form for both the log-stable (αZ = 1.47) and log-normal (αZ =15

2) distributions (Fig. 5). Variability of σZ with R0 was high, but much of the variability
was due to low values of σZ at low values of R0, where we have already determined
the empirical distributions to be unreliable.

If we ignore σZ for R0 < 0.01, the pattern in Fig. 5 (lower panel) implies a smoother
field at intermediate rainfall rates (∼ 0.1 mm 15 min−1) and a more variable field at lower20

and higher rates. This trend toward higher variability at the highest rainfall rates could
be the result of localized, high-intensity rainfall generated from strong convective storm
cells. This trend is not evident in the studies of Over and Gupta (1996), Jothityangkoon
et al. (2000), Pathirana and Herath (2002), or Sharma et al. (2007), who only observed
the scale parameter to increase and then decrease with increasing R0. The difference25

between our and previous results may be due to differences in scales between stud-
ies: Jothityangkoon et al. (2000) and Sharma et al. (2007) analyzed daily rainfall, while
Over and Gupta (1996) and Pathirana and Herath (2002) analyzed radar scans with
resolutions of 4 to 5 km.
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The semivariogram of the observed 15-min rainfall shows covariability in rainfall in-
tensity increasing strongly with increasing separation distance (Fig. 6). In contrast, all
the scale-invariant models produced rainfall fields that showed little change in corre-
lation with separation, though proximal rain was slightly more similar than distant rain
(Fig. 6). When the scale parameter σ as allowed to decrease with decreasing scale5

via Eq. (14), however, the general variogram pattern of the observed rainfall could be
reproduced for separation distances of less than about 10 km by using a value of γ
∼ 0.8 (Fig. 6). At separation distances above 10 km, the semivariances of the simu-
lated rainfall become nearly constant, irrespective of the model or the value of γ. We
believe this is an artifact of the discrete nature of the cascade procedure that was ap-10

plied. Note that at the first cascade level, the rainfall is first separated into four 10 km
by 10 km cells. The rainfall simulated at a point in one of these first four cells will be
equally correlated with the rainfall simulated at a point anywhere in one of the other
three cells. One possible way to prevent this is to incorporate non-stationarity into the
cascade process, which we return to briefly at the end of this section.15

The semivariogram of the presence/absence observations shows that if it is raining
(or not raining) at one location, it is more likely to be raining (or not raining) nearby
than it is further away (Fig. 7). The simulated rainfall fields have this property as well
(at least below the 10 km separation distance), but not to the degree of the observed
rainfall field. Figure 7 gives semivariograms of the simulated presence/absence data20

using Models SI/RIσ/LN and SDσ/RIσ/LN only: semivariograms from all 8 models were
similar because the models are identical in how they simulate intermittency.

Over most of the range of R, the log-normal models reproduced well the observed
CDF of 15-min rainfall totals (Fig. 8). However, the simulated CDFs using the lognor-
mal models diverged from the observed CDF below 0.02 mm 15 min−1. The rainfall-25

dependent (RD) models performed slightly better than the rainfall-independent (RI)
models up to the very highest rainfall intensities. Above about 15 mm 15 min−1, the
rainfall-dependent models overestimated the rainfall intensity at a given probability of
occurrence by roughly a factor of two.
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The log-stable models did better than the log-normal models at reproducing the
overall shape of the observed CDF (Fig. 9), including matching the curvature for R <
0.02 mm 15 min−1. The log-stable models also mimicked the upward curvature of the
observed CDF for the highest values of R., though they did under-predict the probabil-
ities of these extreme events. Making the scale parameter rainfall-dependent resulted5

in an improved CDF, though at the highest intensities these models still underestimated
the rainfall intensity at a given probability of occurrence by as much as a factor of two.

As mentioned previously, the estimation method is biased due to artifacts of the
data. For one, the measurement instrument has a detection threshold, which results
in sparser measured than true rainfall, and hence an underestimation of p, particularly10

when the larger-scale rainfall R0 is low (Veneziano, et al., 2006). A second factor is
the recording precision of the rainfall observations, which particularly affects param-
eter estimation at low rainfall intensities. The effect of precision can be seen in the
preponderance of values of Y + = 1 at low values of R0 (Fig. 4) which, in turn, results
in an underestimation of σ. Similar observations were made by Rupp et al. (2009) and15

Licznar et al. (2011a, b) regarding the empirical weights W + when analyzing rainfall
time series. A third factor is the underreporting of high rainfall intensities due to instru-
ment error, which reduces the variance of Y +. A fourth factor, as already discussed
in Sect. 2.3, arises from the finite number of rainfall gauges used in the estimation
method.20

A variety of procedures can be used to partly account for the bias. One is to itera-
tively adjust the model parameters until the estimated parameters from the simulated
dataset are nearly the same as those from the observed dataset (Veneziano et al.,
2006). Another procedure is to exclude some data while estimating parameters. For
example, in our study we left out data where R0 < 0.004 mm when estimating σZ, for25

the case where σZ was assumed to be independent of R0. However, this excluded
only a relatively small amount of data and thus did not greatly affect the value of σZ
independent of R0. As another example, Licznar et al. (2011a), simply eliminated what
would be analogous in our study to all values of Y + = 1 from the empirical frequency
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distribution, under the assumption that most of these values were artifactual. A third
procedure to deal specifically with recording precision is to add random noise to the
rainfall observations, with the intent of replacing the information lost by round-off error
and thus removing the discretization that leads to an excess of certain values of W +

(or Y +) (Licznar et al., 2011b).5

Bias-correcting procedures such as those above should be explored, and we expect
that they would improve the fits of frequency distributions. We know, for example, that
both data precision and the finite number of gauges serve to decrease the estimated
value of the scale parameter σZ , in the former case by generating an overabundance
of Ŷ + =1 and in the latter case by imposing a maximum value to Ŷ + of Ngauges. A bias-10

correcting procedure that led to an increase in the value of the log-stable parameter
σZ would produce more extreme events, resulting in a CDF more like the observed
one in Fig. 9. It would also increase the semivariance overall, which was generally
underpredicted by the log-stable models (Fig. 6, lower panels).

Lastly, we have assumed stationarity in the rainfall field, though there may be long-15

term spatial patterns across the Warsaw metropolitan area. With our short record
length (less than 3 yr) it would be difficult detect any but very clear and strong large-
scale patterns, which we did not see. Should continuing observations reveal deter-
ministic patterns in the spatial distribution of rainfall, we could account for these within
the MRC framework. Examples of how this might be done using a deterministic field20

of weights that are applied to the cascade generator are given by Jothityangkoon et
al. (2000) and Pathirana and Herath (2002).

4 Conclusions

We have presented and evaluated a method for estimating the parameters of a mul-
tiplicative random cascade model for downscaling rainfall fields when observations of25

the full fields are not available either from radar imagery or from interpolation of very
dense rain gauge network data. The estimation procedure still relies on rain gauge
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data, but the density of the network need only be such that (1) the rainfall rate over
a given time interval averaged over the entire spatial domain can be reasonably ap-
proximated by averaging the rainfall rate from all the gauges, (2) the number and the
spatial coverage of the gauges are adequate for generating a semivariogram of rainfall
intensity.5

When the cascade generator is independent and identically distributed (iid) through-
out the cascade, the parameters can be estimated solely from the frequency distribu-
tion of the ratios of the rain rate at each gauge to the large-scale average rain rate. We
found, however, that an iid cascade generator failed to reproduce the spatial covari-
ance structure of the rainfall over Warsaw, Poland: proximal rainfall was too dissimilar10

using an iid parameterization, and the simulated rainfall only showed a weak relation-
ship between distance and covariability (or semivariance), whereas this relationship
was strong in the observed data.

To better reproduce the spatial structure of actual rainfall fields (as summarized by
the semivariogram), we added scale dependence to the cascade generator. The scale-15

dependent generator introduced an additional model parameter (γ) that could not be
estimated directly from the rain rate ratios. We therefore treated γ as a tuning param-
eter that was estimated by matching the observed and simulated semivariograms. To
keep the model simple (i.e., to one tuning parameter) for this study, we considered only
scale dependence in the generation of positive rainfall amounts, not in the generation20

of rainfall intermittency. A similar strategy, however, could be used for the intermittency
parameter along with the semivariogram of rainfall presence/absence, though it would
require the introduction of at least one additional parameter.

Overall, the scale-dependent MRC models generated the correct frequency dis-
tribution of short-duration rainfall intensities. We recommend, however, further re-25

search into bias in parameter estimation; we expect that through bias-correction pro-
cedures, improvements could be made at both the extreme lower and upper ends of
the distribution.

7279

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/7261/2011/hessd-8-7261-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/7261/2011/hessd-8-7261-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 7261–7291, 2011

Parameterization with
rain gauge data

D. E. Rupp et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

We evaluated the model by using statistical properties of the rain gauge data as
performance targets. This meant it was necessary to downscale to the approximate
capture area of the rain gauge (15×15 cm). For most stormwater drainage system
studies, generating fields at such a fine resolution would be impractical. However, an
expedient property of the MRC model is that it lends itself nicely to downscaling to any5

spatial scale λn, which can conveniently be used to generate gridded rainfall fields for
use as input to hydrologic/hydrodynamic models.

Acknowledgements. We thank Ryan Stewart for his comments and suggestions on an earlier
version of this manuscript.
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 681 
Fig. 1.  Location of rain gauges used in study in Warsaw, Poland.   682 
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Fig. 1. Location of rain gauges used in study in Warsaw, Poland.
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 686 
Fig. 2.  Schematic of two-dimensional multiplicative cascade with branching number b = 4. 687 
 688 

689 

Fig. 2. Schematic of two-dimensional multiplicative cascade with branching number b=4.
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 692 
Fig. 3.  Probability of zero rain at a rain gauge, or equivalently, P(Y = 0), against large-scale 693 
areally-averaged 15-minute rain R0 for R0 > 0. 694 

695 

Fig. 3. Probability of zero rain at a rain gauge, or equivalently, P (Y = 0), against large-scale
areally-averaged 15-min rain R0 for R0 >0.
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Figure 4.  Empirical density (bars) of ln+Y and densities of the fitted stable distribution with 699 
αΖ as a fitting parameter (thin green line) and with αΖ fixed at 1.47 (heavy blue line) and 2 700 
(thin red line).  Distributions are shown for various large-scale areal-averaged 15-minute rain 701 
depths R0 for R0 > 0.  The rainfall depth shown in each plot is the midpoint of the range of 702 
log-transformed rainfall depths used to bin that data in a given depth class.  703 
 704 

705 

Fig. 4. Empirical density (bars) of ln Y + and densities of the fitted stable distribution with α as
a fitting parameter (thin green line) and with α fixed at 1.47 (heavy blue line) and 2 (thin red
line). Distributions are shown for various large-scale areal-averaged 15-minute rain depths R0
for R0 >0. The rainfall depth shown in each plot is the midpoint of the range of log-transformed
rainfall depths used to bin that data in a given depth class.
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 708 

Fig. 5.  Estimated stable distribution parameters αΖ and σΖ for Z = +Yln  against large-scale 709 
areal-averaged 15-minute rain R0 for R0 > 0.  The open symbols indicate where estimation was 710 
clearly affected by artifacts arising from data precision.  In the upper panel, the dashed line 711 
shows the estimate of αZ using all data for R0 ≥ 0.004 mm and the dotted line is σΖ =2 (the 712 
normal distribution).  In the lower panel, values of σZ assume constant αΖ  of 1.47 and 2 for 713 
the stable and normal distributions, respectively.  The solid curves are fitted cubic spline 714 
functions.  The dashed and dotted horizontal lines indicate the values of σΖ averaged over all 715 
R0 ≥ 0.004 mm for the stable and normal distribution, respectively. 716 

717 

Fig. 5. Estimated stable distribution parameters αZ and σZ for Z = lnY + against large-scale
areal-averaged 15-minute rain R0 for R0 > 0. The open symbols indicate where estimation
was clearly affected by artifacts arising from data precision. In the upper panel, the dashed
line shows the estimate of αZ using all data for R0 ≥ 0.004 mm and the dotted line is σZ = 2
(the normal distribution). In the lower panel, values of σZ assume constant αZ of 1.47 and 2
for the stable and normal distributions, respectively. The solid curves are fitted cubic spline
functions. The dashed and dotted horizontal lines indicate the values of σZ averaged over all
R0 ≥ 0.004 mm for the stable and normal distribution, respectively.
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 720 
Fig. 6.  Semivariogram of 15-minute log-transformed rainfall totals R > 0.001 mm from rain 721 
gauges (gray heavy line and solid circles) and from simulations (colored lines) using log-722 
normal and log-stable distributions, rainfall independent (RI) σ, rainfall dependent (RD) σ, 723 
scale independent σ (γ = 0) and scale dependent σ (γ = 0.4, 0.8, and 1.2).  724 
 725 
 726 

727 

Fig. 6. Semivariogram of 15-min log-transformed rainfall totals R > 0.001 mm from rain gauges
(gray heavy line and solid circles) and from simulations (colored lines) using log-normal and log-
stable distributions, rainfall independent (RI) σ, rainfall dependent (RD) σ, scale independent σ
(γ = 0) and scale dependent σ (γ = 0.4, 0.8, and 1.2).
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 730 
Fig. 7.  Semivariogram of 15-minute rainfall presence/absence from rain gauge data (heavy 731 
gray line and solid circles) and from simulations (colored lines) using Models SI/RIσ/LN (γ = 732 
0) and SI/RDσ/LN with γ = 0.4, 0.8, and 1.2.  733 
 734 

735 

Fig. 7. Semivariogram of 15-minute rainfall presence/absence from rain gauge data (heavy
gray line and solid circles) and from simulations (colored lines) using Models SI/RIσ/LN (γ = 0)
and SI/RDσ/LN with γ = 0.4, 0.8, and 1.2.
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 738 
Fig. 8.  Cumulative distribution function (CDF) of non-zero 15-minute rainfall totals from all 739 
observations, of the subset of 2000 15-minute intervals used to initialize the large-scale 740 
rainfall R0 for the simulations, and of the simulations.  Simulated rainfall was generated using 741 
log-normal Models SI/RIσ/LN, SDσ/RIσ/LN with γ = 0.8, SI/RDσ/LN, and SDσ/RDσ/LN 742 
with γ = 0.8.  743 

744 

Fig. 8. Cumulative distribution function (CDF) of non-zero 15-min rainfall totals from all ob-
servations, of the subset of 2000 15-min intervals used to initialize the large-scale rainfall R0
for the simulations, and of the simulations. Simulated rainfall was generated using log-normal
Models SI/RIσ/LN, SDσ/RIσ/LN with γ = 0.8, SI/RDσ/LN, and SDσ/RD σ/LN with γ = 0.8.
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 747 

Fig. 9.  Cumulative distribution function (CDF) of non-zero 15-minute rainfall totals from all 748 
observations, of the subset of 2000 15-minute intervals used to initialize the large-scale 749 
rainfall R0 for the simulations, and of the simulations.  Simulated rainfall was generated using 750 
log-stable Models SI/RIσ/ST, SDσ/RIσ/ST with γ = 0.8, SI/RDσ/ST, and SDσ/RDσ/ST with 751 
γ = 0.8.  752 
 753 

Fig. 9. Cumulative distribution function (CDF) of non-zero 15-min rainfall totals from all obser-
vations, of the subset of 2000 15-min intervals used to initialize the large-scale rainfall R0 for the
simulations, and of the simulations. Simulated rainfall was generated using log-stable Models
SI/RIσ/ST, SDσ/RIσ/ST with γ = 0.8, SI/RDσ/ST, and SDσ/RDσ/ST with γ = 0.8.
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